Cellulose NanoCrystals: a biomaterial with great potential

Antoine Charbonneau VP Business Development

About CelluForce

- World leader in the production of Cellulose NanoCrystals (CNC)
- Head Office in Montreal, Quebec, Canada
- Production facility located in Windsor, Quebec, Canada
- Shareholders

CNC & CelluForce's History

CelluForce NCCTM Properties

Strong

Due to their crystallinity, each particle is very strong

	Tensile Strength (MPa)	Young's Modulus (GPa)	Elongation at Break (%)
CelluForce NCC [™]	10,000	150	6.7
Carbon Fibers	4,000	235	1.6
Kevlar™ 29	2,800	180	4.0

 Allows to strengthen materials through percolation networks (nano dispersion)

Surface Active

- Surface comprised of hydroxyl and sulfate groups
- Allows to react other chemicals for new functionalities
- Inherently hydrophilic (NCV-100)
- Can be made hydrophobic (NCM series)
- Negatively charged (ionic interactions)
- Electro-magnetic response due to charges

Suspending

- CNC forms liquid crystal
- Needles self-orient and form layers as the fluid is concentrated
- Structure allows a very robust suspension
- Also creates colour upon drying

Liquid crystal Self-assembly Chiral

Temperature resistant

- The high purity of the CelluForce NCC[™] allows stable properties up to the decomposition temperature of cellulose
- Good temperature resistance compared to surfactants
- Stable up to 280°C to 300°C

Thixotropic

Large increase in viscosity with concentration

Exhibits shear thinning properties

Emulsive

- High surface area
- High degree of interaction with its surrounding
- Forms Pickering emulsions
- Surfactant free stable colloidal suspensions

Pickering emulsions

SEM of CNC coated oil droplets

Sustainable

- Made from an abundant and renewable resource
- Captures green house gases
 - I m³ of wood can sequester I m³ CO₂
- Replaces petrol based products
- Overall reduction of carbon footprint

Safe

- Numerous human health and safety tests have shown that CelluForce NCC[™] is benign
 - Oral, inhalation and dermal tests for acute toxicity to mammals, show that CelluForce NCC[™] falls into the least toxic classification
 - In vitro and in vivo tests show CelluForce NCCTM to be within acceptable limits
 - The dried form aggregates in 10 30 µm particles allows standard respiratory protection to be used for workers
- Celluforce NCC[™] has been added to Canada's DSL allowing its unrestricted production and sale
- Celluforce NCCTM is exempt from REACH under the polymer exemption rule
- Celluforce NCCTM complies with TSCA regulations in the United-States

Environment and Climate Change Canada

Markets and Applications

Oil and Gas

Plastics and Composites

Paints, Inks and Coatings

Adhesives

Rubbers and Elastomers

Electronics

Oil Production Sand Control

Biopolyurethane (BPU) Foams

Phenol Formaldehyde Resin

- Development of a new glue mix
 - Commercial PF resin
- No change of panel production conditions
- Benefits
 - Simplify formulation
 - Improved panel strength
 - Stable glue mix, long pot life

Plastic Films Coating

- Improved ink drying
- Improved print quality
- Improved wet/dry ink rub
- Reduced oxygen transmisson rate

Water-based multicolour inkjet print on Mylar film

Water-based multicolour inkjet print on CNC coating on Mylar film.

PVOH

- Improvement of tensile strength, stiffness and elongation at break
 - \rightarrow potential down-gauging of films
- Improvement of water-vapor impermeability
 - \rightarrow potential use for food-packaging
- No impact on optical properties and thermal stability

 \rightarrow no major changes to the current film processing method

Source: Alves Silvério, H. et al - 2013 - Journal of Nanomaterials & Pereira, A. et al. - 2014 - Elsevier

Collaboration is Essential

CelluForce's CNC knowledge

Industrial partner's application knowledge

Harness the power of nature to create better products

